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We show that the dynamics of stock prices can be accurately described as a continuous time random walk
with a time dependent diffusion coefficient. The time evolution of the diffusion coefficient can be derived from
tick by tick databases provided the stock price is characterized in terms of a couple of values describing the
best ask and the best bid. We are then led to a finding and, namely, that the transition rate of the random walk
process is different from the frequency of transactions. Our results allow us to obtain a fast and reliable
determination of the diffusion coefficient and precisely confirm that fat tails in the distribution of price
variations are due to volatility fluctuations.
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The idea that share prices are formed in stock markets as
a result of a random walk process is deeply rooted in both
economist’s[1] and physicist’s literature[2]. In practice it
forms the basis for all methods used to price derivative fi-
nancial products[3]. The key parameter in the pricing pro-
cedure is the asset volatility, closely related to the diffusion
coefficient of the underlying random walk. Therefore a reli-
able and fast evaluation of this parameter is of paramount
importance to monitor the risk involved in the trading activi-
ties.

Nowadays physicists are used to measuring directly the
step size and the waiting time distribution characterizing ran-
dom walks. This microscopic approach to diffusion yields
the best time resolution and is very popular due to the avail-
ability of a variety of tools to perform atomic scale micros-
copy [4]. A microscopic picture of stock behavior is far more
easy to obtain: every day most stock markets make freely
available on their website a tick by tick database, where each
transaction is registered[5]. Our aim is to show how to use
them properly to evaluate diffusion and hence volatility.

Detailed analysis of the distribution of returns, as the
variations of price logarithmsGDtstd=ln xst+Dtd−ln xstd
<Dx/x are referred to in the specialized literature, has been
presented by a number of authors[6,7] showing marked de-
viation from a Maxwellian curve and the presence of fat tails
at all time scales except very long ones. The question natu-
rally arises of whether the observed distributions can still be
interpreted as a result of a stationary statistical process. In his
pioneering work on cotton price, Mandelbrot[8] put forward
the idea that a description in terms of a stable Levy process
was a good candidate to explain the data.

The analysis of large price databases has shown that the
cumulative distribution representing these tails can be well
fitted by a power lawPsxd=x−a, as appropriate for a Levy
distribution. However the exponenta turns out to be larger
than 2 for both stocks[9], stock averages[10], bonds[7],
and foreign exchange rates[11], with possibly the notable
exception of spot commodity prices[12]. This rules out the

possibility that the elementary distribution of returns has in-
finity variance, in contrast with the Levy hypothesis.

If the hypothesis of stationarity is abandoned, it is pos-
sible to account for the existence of fat tails provided the
variance of the elementary distribution fluctuates on a time
scale comparable to the time span required to fulfill the con-
ditions for the validity of the central limit theorem in the
wings of the distribution[7]. Market models which assume
that the fractional standard deviation, also referred to as price
volatility, is a stochastic variable are widely adopted in the
economic literature.

From a physicist standpoint, these processes are best de-
scribed as one-dimensional, continuous time, random walks
[13] (CTRW). In these models the system makes a random
jump d and remains in the new position for a finite timet
before a new jump is made. If both the jump amplituded and
the waiting timet are statistically independent, the process is
described by two distribution functionsfsdd, which repre-
sents the probability density of jumps, andcstd, the waiting
time distribution, which gives the probability density of a
pauset between two successive steps.

It has been shown by Montroll and Schleisinger[14] that
the CTRW propagator is governed by a generalized master
equation which, for genericfsdd and cstd, has a non-
Markovian character in both time and space domains. The
results of standard random walk with a Gaussian propagator
are recovered iffsdd has finite second momentkd2l andcstd
has finite first momentktl. In this case the diffusion coeffi-
cient isD=kd2l /2ktl and the price variationDx in the time
interval Dt, once normalized toÎ2DDt, should be normally
distributed with unity standard deviation. In this paper we
show that new insight on the dynamics of the process can be
obtained by checking this basic conclusion against market
data.

Differently from previous applications of CTRW to finan-
cial data[15,16], we do not make hypothesis aboutfsdd and
cstd.We just assume that bothkd2l andktl are finite. The first
assumption is justified by the observation that tails in the
price distribution are outside the Levy regime. For the sec-
ond assumption we can argue for the time being that the
efficient market hypothesis[17] should rule out any non-*Email address: bartiromo@fis.uniroma3.it

PHYSICAL REVIEW E 69, 067108(2004)

1539-3755/2004/69(6)/067108(4)/$22.50 ©2004 The American Physical Society69 067108-1



Markovian behavior in the time domain and therefore require
the existence of a finitektl. We will come back later to this
point once a proper definition of the waiting time in our
problem will be in hand.

It is appropriate to note at this point that modern financial
markets are intrinsically seasonal. Indeed typically trading
activity is intense at the market opening, when the informa-
tion from overnight events has to be taken care of, and before
the closing, when traders need to adjust their position ahead
of the night pause. Similarly on longer time scales, trading
intensity fluctuates depending on the calendar of events such
as, for example, management reporting and dividend distri-
bution. Besides these structural cycles, additional variations
come from the evolving perception of financial risks by trad-
ing agents which also has a cyclical behavior although with
variable time period. The presence of different agents on the
market with different aims and/or different perception of the
risks involved in the trading activity makes it clear that both
kd2l and ktl have to be considered as time dependent quan-
tities [7]. We will note this time dependence by an apex in
the following of this paper.

For this work we use a tick by tick transaction database
consisting of about three years of data of a future on the MIB
average index(FIB) of the Milan stock exchange[18] and of
13 among the most traded shares on that market which we
have selected so as to be representative of the different trad-
ing situations. We first analyze the distribution of returns to
show that our database displays the typical behavior for this
kind of assets. To ease comparison, we normalize for each
stock the returnGDtstd to its variance in the considered data
set. In the upper panel of Fig. 1 we show the cumulative
distribution function of returns of the FIB index on four time
scales ranging from 15 min to more than 3 h. This figure
shows the typical leptokurtic behavior reported in the litera-
ture, where the distributions stay below the Gaussian for nor-
malized returns up to about 2 and fat tails appear above this
value. The slow convergence toward the Gaussian with in-
creasing time scale is also apparent. The straight line in the
figure represents a power law witha=3 and demonstrate that
the experimental distributions are well outside the Levy
stable regime.

In the lower panel of Fig. 1 we plot the cumulative dis-
tribution of 75 min minutes returns for all the 14 time series
used in this study. Although the distributions remain very
similar in their bulk, thea exponent which describes the tails
can vary between 3 and 5 depending on the stock under
consideration. This range ofa is well representative of the
values reported in the literature.

We move now to analyze the behavior of normalized price
variationDx/Î2DDt=Dx/Î2kd2ltDt / ktlt. In first instance we
computekd2lt and ktlt by considering each transaction as
reported in the database. We focus our analysis on two time
scales: 15 min, the minimum required to have a meaningful
number of transactions, and 1 day, the maximum possible
with our approach without making additional assumptions.
Indeed price variations over a time interval longer than 1 day
incorporate overnight changes which take place in the ab-
sence of trading activity.

We begin by evaluating the standard deviations for all
our 14 data series. The results are reported as full symbols in

Fig. 2. We observe for both time scale values which are
systematically below unity with average value of 0.47±0.03
and 0.51±0.03, respectively, for the short and the long time
scale. Deviations from a Gaussian are also detected by the
analysis of the kurtosis of the distributions which shows val-
ues systematically higher than 3, which is the Gaussian
value. We obtain an average value of 3.77±0.1 and
3.24±0.12, respectively, for the short and the long time
scale.

These findings suggest that the evaluation of the diffusion
coefficient is biased and gives systematically high values. A
careful consideration of the working mechanism of a stock
market supports this indication. Indeed stock prices are the
result of a continuous double auction whereby traders submit
limit orders, where the less favorable price for the transaction
is specified together with the number of shares to buy or sell.
So called market orders also exist, where only the quantity is
specified, which are therefore immediately executed at the
best available price. It is also worth noting that prices are
quantized and that the minimum price variation, the tick, can

FIG. 1. (a) The cumulative distribution function of returns of the
FIB index is shown for four time scales ranging from 15 to
195 min. On the abscissa the return is normalized to the standard
deviation of each database, after subtracting the mean value. The
positive and negative branches of the distribution are overlaid. The
continuous line represents a power law witha=3 while the dashed
line is a normal distribution of unity variance.(b) Here we show the
cumulative distribution of 75 min returns for all the 14 time series
used in this study.
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be different from stock to stock. The key device of a double
auction is the order book where waiting limit orders are
stored in two queues, the bids which are buy orders and the
asks which are sell order. Therefore a double auction is not
characterized by a single price but rather by the best bid,
which is the price a potential seller would get, and the best
ask, which is the price a potential buyer would need to pay in
order to get the shares.

The double auction mechanism and its relevance to price
formation is gaining an increasing attention in the physics
literature [19]. Here we limit ourself to note that from a
physicist point of view as long as the best bid and the best
ask price remain constant in a double auction the state of the
system is not changed. Any switch of the last contract price
between a constant pair of best bid–best ask therefore does
not represent an event, and the system has to be considered
in a waiting state until this pair does not change.

Another way to look at this problem is to consider, for
example, that once the last contract price makes a transition
upward from the best bid to the best ask, it is more probable
to observe a downward transition than one further step up. In
fact a trader selling a single share can easily produce the step
down while the whole amount of shares offered at the best
ask has to be bought to produce a new step in the up direc-
tion. Therefore the time series of last price variation cannot
be considered uncorrelated, the conditions for the validity of
the central limit theorem are not satisfied and normal diffu-
sion can be observed only over time intervals longer than the
correlation time.

A practical way to overcome this difficulty is to identify a
transition only when the best ask or the best bid changes and
to quantify the step amplitude as the corresponding variation
(usually corresponding to one tick for liquid stocks). A
simple algorithm can easily identify most of the transitions
from the price sequence in a transaction database(transitions
are only missed when a new best ask or best bid is exposed
but not touched by traders before reverting to the old value

by an incoming limit order, a seldom occurrence in our ex-
perience). This leads to a different evaluation of bothkd2lt

and ktlt.
We have therefore repeated our analysis using these new

values in the computation of normalized returns. The results
we obtained fors are reported again in Fig. 2 this time as
open symbols. Now the values are well distributed around
the unity with average value of 0.96±0.02 and 1.01±0.03,
respectively, for the short and the long time scale. The
Gaussian nature of the distribution is confirmed by the analy-
sis of the kurtosis with average values of 2.93±0.04 and
3.07±0.08, respectively, for the short and the long time
scale.

A more comprehensive and detailed comparison of the
experimental distributions of normalized price variations

FIG. 3. The significance level of the Kolmogorov-Smirnov test.
Circles refer to 15 min data while squares refer to 1 day data. Full
symbols are obtained by considering all transactions in the time
series while open symbols show the results obtained when the sys-
tem is described by the best bid–best ask prices. The full symbols
show a satisfactory significance level only for the FIB data while all
the data set can pass the test when the open symbols are considered.

FIG. 4. This figure shows the cumulative distribution function
of the waiting time between two successive transitions for all the 14
time series. On the abscissa we use the delay normalized to its mean
value in the relative time series. The full line represents a power law
with b=1 while the dashed line is a Poisson distribution with unit
average delay.

FIG. 2. The standard deviations of normalized price variation
is plotted for all the 14 series used in this study. Circles refer to
15 min data while squares refer to 1 day data. Full symbols are
obtained by considering all transactions in the time series while
open symbols show the results obtained when the system is de-
scribed by the best bid–best ask prices. In this last cases is unity as
expected from a CTRW description.
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with a normal distribution of unitary variance was obtained
by a Kolmogorov-Smirnov test on all 14 data sets. The out-
come is illustrated in Fig. 3. As in the previous figures the
full symbols show the results obtained by using all transac-
tions. In this case only for the FIB index we obtain a signifi-
cative probability to pass the test. This happen because the
FIB is traded with a very small relative tick, less than 10−4,
and therefore almost every transaction results in a transition.
This is not the case for the other series whose tick ranges
between 3310−3 and 10−3. None of them can pass satisfac-
torily the test.

The situation changes radically when a description in
terms of transitions is adopted, as the open symbols in Fig. 3
clearly show. In this case the test is fully passed by all the
data sets with a significance level not lower than 92%. This
confirms the need to distinguish between transactions and
transitions to better describe the dynamics of share prices.

We can now turn back to the waiting time distribution and
analyze our database to verify the assumption we made about
ktl. In Fig. 4 we show the cumulative distribution function of

the waiting time between two successive transitions for all
the 14 time series. If we adopt a power lawcstd=t−b to fit
the wing of the distributions in Fig. 4, we obtainb ranging
between 2 and 3. Since for all series we haveb.1, these
data confirm thatktl is finite as assumed in our previous
analysis.

In summary we have shown that a continuous time ran-
dom walk model is fully compatible with the observed fluc-
tuations of stock prices once the time evolution of the vari-
ance of the step distribution and of the transition rate is taken
into account. However, to achieve this result it is important
that the system is characterized in terms of a couple of best
ask–best bid prices and that a transition is identified only
when this couple changes. We believe this is an important
methodology remark to keep in mind whenever the dynamic
of a stock market is analyzed by means of tick by tick data.
We have shown that our method yields a fast and accurate
determination of the diffusion coefficient thereby precisely
confirming that fat tails in the distribution of price variations
are due to volatility fluctuations.
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